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Chemical wave front in two dimensions
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A reactive lattice-gas cellular automaton model is used to simulate a chemical wave front in two di-
mensions. The computed value of the front propagation velocity agrees with the one-dimensional (1D)
theoretical value. In contrast, the front width is half the predicted 1D value. This result is explained by
the fractal character of the interface. The fractal structure, described through several fractal dimen-
sions, is shown to be independent of the reaction and diffusion parameter values.

PACS number(s): 47.70.Fw, 82.20.Mj, 82.20.Wt

A large variety of phenomena encountered in chemis-
try [1], biology [2], or materials science [3] are commonly
described by nonlinear reaction-diffusion equations lead-
ing to complex space-time behaviors. Among these,
wave-front propagation has been the subject of both
theoretical and experimental interests. Much is known
about propagating solutions in a one-dimensional (1D)
medium [4-7]; it is easy to check that in a two-
dimensional (2D) medium [8,9], proper 1D initial condi-
tions will generate only effective 1D, macroscopic, and
purely deterministic wave solutions.

In this Brief Report we shall introduce a lattice-gas
model that provides a smaller scale description (referred
to as ‘“‘microscopic”), in order to investigate the validity
of the macroscopic predictions when local microscopic
and stochastic fluctuations are taken into account. This
leads to macroscopic differences for the properties of the
front, the origin of which is traced to the fractal charac-
ter of the interface.

Let us consider the following reaction-diffusion equa-
tion first studied by Fisher [4] and Kolmogorov, Petrov-
sky, and Piskunov [5]:
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In a chemical context, Eq. (1) describes a 2D chemical
medium where two species 4 and B react according to
the following autocatalytic scheme:

A+B—A+ A4 . (2)

In Eq. (1), a =a(x,y,t) denotes the local fraction of parti-
cles A, k is the rate constant, and D is the diffusion
coefficient assumed to be identical for 4 and B. For
sufficiently steep initial conditions independent of y (in-
cluding the step function), 1D results [4—-6] state that Eq.
(1) admits uniformly translating solutions a(x —ut),
propagating in the x direction with the minimum allowed
velocity u i,
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and replacing the unstable uniform and stationary state
a =0 by the stable state a =1. An approximate value s of
the steepness at the inflection point can be used to define
a front width [2] as:
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The 2D deterministic equation thus leads to a 1D front
for initial conditions independent of y. However, a front
propagation in a 2D lattice-gas cellular automaton
(LGCA) cannot be reduced to an effective 1D problem.
Thus, our first objective is to compare the theoretical re-
sults of the 1D deterministic front with the correspond-
ing results deduced from the 2D simulation.

We consider a binary mixture in a Hardy-de
Pazzis—Pomeau (HPP) model [10,11], with an equal num-
ber of particles 4 and B moving on a square lattice at in-
teger times [note that the total number of particles
remains constant under reaction (2)]. We choose units
such that the lattice constant and velocity modulus equal
1. No more than one particle is to be found at a given
time and node, moving in a given direction according to
the so-called exclusion principle.

In order to ensure a steplike initial profile, the left
(right) half of the lattice is filled with chemical species 4
(B) with a given number density p. A two-step cellular-
automaton updating rule is defined on the Boolean field
of node states. Step 1 is propagation along the direction
of particle velocities. In contrast with previous ap-
proaches [12], step 2 is a momentum-conserving collision.
All different configurations, including those obtained by
permutation of the different chemical species, are con-
sidered for collisions between two, three, and four parti-
cles. When several post collision configurations are possi-
ble, the final state is randomly chosen. For every col-
lision between particles of different species, the collision
is reactive with a probability K linked to the rate con-
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TABLE 1. Comparison between the minimum propagation
velocity un;, predicted by the deterministic 1D theory and the
mean velocity # deduced from the 2D simulation for different
values of rate constant k and diffusion coefficient D.

D 1.42 2.25 2.25 2.25 4.75 8.08
k 0.01 0.01 0.02 0.04 0.01 0.006
Uin 0.24 0.30 0.42 0.60 0.44 0.44
7 0.24 0.32 0.45 0.57 0.44 0.44

stant k of reaction (2).

Following Kapral and co-workers [12], we have
checked that these collision rules lead to the relation
k =Kp. A careful test has proven that the system, in a
statistically stationary state, obeys the usual mean-field
description [13]. The diffusion coefficient for our model
verifies [14] that 4D =(2/p)—1. Classical periodic
boundary conditions are imposed only in the y direction.
The propagation of the front is taken into account in the
following manner: Defining a lattice column by the set of
nodes with an identical abscissa x, we couple the first and
the last columns but keep them separated by a permeable
wall. If a particle 4 from the first column crosses the
wall, it changes into a particle B —reciprocally for a par-
ticle B moving from the last column into the first one.

In order to mimic an infinite medium in the x direc-
tion, it is necessary to counterbalance the consumption of
particles B due to reaction (2). When the number of par-
ticles A becomes greater than half the total number of
particles, the wall is translated to the left and all the lat-
tice is updated, the excedent of A4 being converted into B.

The wall motion contains global information about the
entire front propagation and the front velocity is
identified with the wall velocity. Its time-averaged value
7 is computed for different values of £ and D. In Table I
we compare # with (3). The agreement is satisfactory, in-
dicating that in a 2D microscopic and stochastic medi-
um, an initial step-function profile evolves to a front
propagating with the minimum velocity as in 1D macro-
scopic [6] or microscopic [7] media.

Figure 1 represents the mean concentration profiles of
A and B in the wall frame after averaging over y and t.
In Table II the mean front width € is compared to the
macroscopic value (4). As opposed to the previously ob-
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FIG. 1. Mean front profiles in the wall frame for the follow-

ing conditions: 512X 512 lattice, rate constant k =0.003, and
diffusion coefficient D =2.25.

TABLE II. Variation of front properties with the rate con-
stant k for a fixed diffusion coefficient D =2.25. e and z are the
front widths deduced, respectively, from the 1D theory and the
2D simulation; F; (F,) is the fractal dimension of the interface
from Fig. 3(a) [Fig. 3(b)]; and S is the statistical entropy.

k 0.003 0.006 0.01 0.02 0.04
e 219 155 120 85 60

e 103 76 57 43 29

F, 1.63 1.64 1.63 1.62 1.51
F, 1.91 1.91 1.89 1.80 1.68
S 0.681 0.681 0.681 0.679 0.678

tained 1D simulation results [7] we find here that € and e
do not coincide. Rather, we get e=e /2.

A closer analysis of the microscopic interface between
the reactive species A and B thus appears necessary. A
recent analysis of a purely diffusive phenomenon [15] sug-
gests an investigation of possible fractal characteristics of
the front. We define the interface as the set of lattice sites
occupied by two different species. An instantaneous plot
is displayed in Fig. 2. A mere observation reveals a spa-
tial extension and an asymmetrical distribution of points
in the x direction: The 2D interface is somewhat more
spread to the left, similarly to the 1D front profile [7].

To be more quantitative, we implemented three
different definitions of the fractal dimension. They are
based upon different theoretical characteristics of fractal
sets of points extended in a computational form to “real”
fractals; these are defined, rather, as sets of cells of finite
size linked to the resolution of the lattice model. The as-
serted fractal character of the interface is proved by a
self-similarity test, performed by computing the dimen-
sion of the structures deduced after contraction of the lat-
tice constant by a reasonable factor; we chose here 4 and
8. A cell of the contracted lattice is considered as an in-
terface point as soon as the corresponding 4X4 (8X8)
square of the initial lattice contains at least 1 (2, in order
to reproduce a decrease of sensitivity) interface point(s).
In Figs. 3(a) and 3(b), the curves corresponding to the ini-
tial and contracted lattices have identical slopes equal to
a well-defined fractal dimension, independent of the
chosen lattice constant, thus having an intrinsic, hence
relevant, meaning. Figure 3(a) illustrates the box-
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FIG. 2. Interface, defined as the lattice nodes occupied at the
same time by the two reactive species 4 and B, for the condi-
tions in Fig. 1.
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FIG. 3. Self-similarity test and determination of the fractal
dimension of the interface in Fig. 2 for (a) the box-counting
method [log-log plot vs 7 of the number C(r) of square boxes of
side r required to cover the interface] and (b) the Grassberger
and Procaccia method [log-log plot vs r of the mean number
G (r) of interface points in a disk of radius » around an interface
point]. The slope of the linear region yields the fractal dimen-
sion.

counting method [16]. The dimension value denoted by
F;~1.63%0.02 appears to be independent of k£ and D, as
can be seen in Tables II and III. Quite similar results
have been obtained using the alternative codimension
method [16]. The first method leads to the so-called
“similarity dimension,” the second one to a “coverage”
dimension (or capacity). A somewhat larger value
F,~1.89%0.02 is found using the Grassberger and Pro-
caccia method [17] illustrated in Fig. 3(b). We believe
that this last method, initially designed to compute the
dimension of a strange attractor from a generic trajecto-
ry, overestimates in our case the dimension; indeed,
points of the interface inner region should not be given
the same reactive weight, as they are less accessible than
the points of the outer region of the interface. The
discrepancy between F; and F, reveals, in addition, a
tangled and intricate structure rather than a diffuse and
fingerlike structure. We define the statistical entropy S of
the interface as

é [a; In(a;)+b; In(d;)] ,

i=1

S=—

1
p

where p is the number of interface points and a; (b;) the
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TABLE III. Variation with the diffusion coefficient D of the
statistical entropy S and of the fractal dimensions F; and F, for
a fixed rate constant k =0.01.

D 1.42 2.25 4.75 8.08
F, 1.38 1.63 1.61 1.63
F, 1.91 1.91 1.85 1.80
S 0.673 0.681 0.687 0.689

fraction of particles 4 (B) at node i. In Tables II and III
we show that S is independent of the values of k and D,
thus supporting the universality of the fractal properties.

Finally, the dimension F, (or F,) of an interface sec-
tion at fixed x (or fixed y) is computed. Very close values
F,~F,~0.82%0.02 are found, indicating that the fractal
structure is isotropic, and self-similar rather than self-
affine (though directions x and y are not equivalent).

The above discussion can be used to show why the
fractal nature of the mesoscopic interface gives e~e /2.
The boundaries a= 10 and B=70 of the linear regime in
Fig. 3 are identified with the smallest and the greatest
scales for which the fractal properties are significant. We
denote C(r) the number of r Xr cells covering the inter-
face. From the very definition of F, we have

c(p) . (5)

At the macroscopic scale B (8> a), the fractal details are
not detectable, and it is relevant to identify the perceived
interface area $*C(f3) with the reactive surface eL of the
deterministic plane front, where L is the lattice extension
in the y direction. At the microscopic scale a, the inter-
face area a’C(a) is equal after a space-time average to
eL; since the fractal structure increases the chemical
efficiency of each site, this effective area is smaller than
the macroscopic one eL. Equation (5) leads to the quanti-
tative estimate of this reduction:
2-F,

, (6)

B

which gives e =~e /2, as is observed in Table II. Detailed
aspects of these investigations will be presented in a
forthcoming article.

In conclusion, the lattice-gas simulation of a wave
front propagating into an unstable state has shown that
the propagation velocity is selected in a 2D microscopic
and stochastic medium exactly as in a 1D macroscopic
and deterministic one. But the profile width is decreased
by a factor of 2. This result is justified by the fractal na-
ture of the interface, which increases the reactivity of
each site. The fractal properties appear to be indepen-
dent of the reaction and diffusion parameters and allow
us to give a quantitative estimation of the width decrease.

e=e
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